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ABSTRACT   

We analyze amplification of terahertz plasmons in a grating-gate semiconductor hetero-structure. The device consists of 
a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT), i.e. a HEMT structure with a 
double-barrier gate stack enabling resonant tunneling from gate to channel.  In these devices, the key element enabling 
substantial power gain is the coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e. 
the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as in 
previous works, enabling amplification with associated power gain >> 30 dB at room temperature. 
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1. INTRODUCTION  
The terahertz (THz) frequency range is the region of the electromagnetic spectrum lying between radio-frequency and 
the infrared.  Although much progress has been made in recent years, technology accessing the THz band is still 
remarkably underdeveloped.  The THz band was once unexplored and untapped to such an extent that it was often 
referred to as the “THz-gap”; however, recent progress in sources and detectors is closing this “THz-gap” and turning 
THz technology into one of the most rapidly growing technological fields [1].  Over the past decades, the terahertz range 
has become the subject of much attention due to its wide range of applications including astronomy, imaging, 
spectroscopy, communications, and so on [2-3].  Although significant progress has been accomplished, there is still a 
need for devices efficiently operating at these frequencies, for instance, devices enabling power amplification.  In this 
context, resonant-tunnel-diode gated high-electron-mobility transistors (RTD-gated HEMTs) [4-6] have been recently 
been discussed capable of enabling power gain at terahertz frequencies [7].  In these devices, the power gain originates 
due to interplay between electron plasma waves, which are excited in the HEMT two-dimensional electron gas (2DEG), 
and resonant tunneling, which occurs when electrons tunnel from the gate-electrode to the 2DEG because of the device 
gate-stack being a double-barrier hetero-structure.  This resonant-tunneling hetero-structure can effectively operate as a 
gain medium providing gain to the terahertz plasmons excited in the channel.  Previous theoretical work on these 
devices, employing antenna fed configurations, predicted the potential of achieving gain exceeding 5 dB in the GaN 
materials system (see Fig. 1) [7].  Theoretical work on the graphene materials system [8] predicts a slightly larger gain 
levels [9].   
 
In this work we discuss GaN-based grating-gate structures.  In these structures, incoming terahertz radiation is coupled 
into plasmons [10-12] in the active region of the device via the grating-gate itself [13], rather than by an antenna 
structure as in our previous work [7].  These plasmons are then amplified as they travel through the 2DEG and 
eventually re-radiated as amplified terahertz radiation.  When analyzing, by means of numerical simulations, this re-
radiated terahertz radiation we observe that terahertz power amplification with gains >> 30 dB are possible in optimized 
device configurations. 
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conductivities of the gated and ungated regions, the negative differential conductance level achievable from the RTD are 
identified as key parameters affecting the attainable power gain levels. 
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